Backtrader стратегия полосы Болинджера
import datetime # For datetime objects
import os.path # To manage paths
import sys # To find out the script name (in argv[0])
# Import the backtrader platform
import backtrader as bt
import requests
import json
import time
import math
from datetime import datetime
import pandas as pd
def get_polonix() :
time_depth = 500
start_day = 500
st_time=time.time()-start_day*24*60*60
end_time=st_time+time_depth*60*60*24
pair = 'USDT_BTC'
#resource=requests.get("https://poloniex.com/public?command=returnChartData¤cyPair=%s&start=%s&end=%s&period=1800" % (pair,st_time,end_time))
resource=requests.get("https://poloniex.com/public?command=returnChartData¤cyPair=%s&start=%s&end=%s&period=14400" % (pair,st_time,end_time))
#resource=requests.get("https://poloniex.com/public?command=returnChartData¤cyPair=%s&start=%s&end=%s&period=300" % (pair,st_time,end_time))
#resource=requests.get("https://poloniex.com/public?command=returnChartData¤cyPair=%s&start=%s&end=%s&period=86400" % (pair,st_time,end_time))
#resource=requests.get("https://poloniex.com/public?command=returnChartData¤cyPair=%s&start=%s&end=%s&period=21600" % (pair,st_time,end_time))
data=[]
chart_data={}
chart_data = json.loads(resource.text)
for elems in chart_data:
data.append(elems)
df = pd.DataFrame(data, columns=['date', 'open', 'high', 'low', 'close', 'volume'])
df['openinterest']=0
df['date'] = pd.to_datetime(df['date'], unit='s')
#df = df[(df['date'] > '2018-1-1') & (df['date'] <= '2018-2-1')]
#df = df[(df['date'] > '2017-9-1') & (df['date'] <= '2018-1-1')]
df = df[(df['date'] >= '2018-4-1')]
df = df.set_index('date')
#print(df)
return df
# Create a Stratey
class TestStrategy(bt.Strategy):
params = (('BBandsperiod', 20),)
def log(self, txt, dt=None):
''' Logging function fot this strategy'''
dt = dt or self.datas[0].datetime.date(0)
print('%s, %s' % (dt.isoformat(), txt))
def __init__(self):
# Keep a reference to the "close" line in the data[0] dataseries
self.dataclose = self.datas[0].close
# To keep track of pending orders and buy price/commission
self.order = None
self.buyprice = None
self.buycomm = None
self.redline = None
self.blueline = None
# Add a BBand indicator
self.bband = bt.indicators.BBands(self.datas[0], period=self.params.BBandsperiod)
def notify_order(self, order):
if order.status in [order.Submitted, order.Accepted]:
# Buy/Sell order submitted/accepted to/by broker - Nothing to do
return
# Check if an order has been completed
# Attention: broker could reject order if not enougth cash
if order.status in [order.Completed, order.Canceled, order.Margin]:
if order.isbuy():
self.log(
'BUY EXECUTED, Price: %.2f, Cost: %.2f, Comm %.2f' %
(order.executed.price,
order.executed.value,
order.executed.comm))
self.buyprice = order.executed.price
self.buycomm = order.executed.comm
else: # Sell
self.log('SELL EXECUTED, Price: %.2f, Cost: %.2f, Comm %.2f' %
(order.executed.price,
order.executed.value,
order.executed.comm))
self.bar_executed = len(self)
# Write down: no pending order
self.order = None
def notify_trade(self, trade):
if not trade.isclosed:
return
self.log('OPERATION PROFIT, GROSS %.2f, NET %.2f' %
(trade.pnl, trade.pnlcomm))
def next(self):
# Simply log the closing price of the series from the reference
self.log('Close, %.2f' % self.dataclose[0])
# Check if an order is pending ... if yes, we cannot send a 2nd one
if self.order:
return
if self.dataclose < self.bband.lines.bot and not self.position:
self.redline = True
if self.dataclose > self.bband.lines.top and self.position:
self.blueline = True
if self.dataclose > self.bband.lines.mid and not self.position and self.redline:
# BUY, BUY, BUY!!! (with all possible default parameters)
self.log('BUY CREATE, %.2f' % self.dataclose[0])
# Keep track of the created order to avoid a 2nd order
self.order = self.buy()
if self.dataclose > self.bband.lines.top and not self.position:
# BUY, BUY, BUY!!! (with all possible default parameters)
self.log('BUY CREATE, %.2f' % self.dataclose[0])
# Keep track of the created order to avoid a 2nd order
self.order = self.buy()
if self.dataclose < self.bband.lines.mid and self.position and self.blueline:
# SELL, SELL, SELL!!! (with all possible default parameters)
self.log('SELL CREATE, %.2f' % self.dataclose[0])
self.blueline = False
self.redline = False
# Keep track of the created order to avoid a 2nd order
self.order = self.sell()
if __name__ == '__main__':
# Create a cerebro entity
cerebro = bt.Cerebro()
# Add a strategy
cerebro.addstrategy(TestStrategy)
# Datas are in a subfolder of the samples. Need to find where the script is
# because it could have been called from anywhere
#modpath = os.path.dirname(os.path.abspath(sys.argv[0]))
#atapath = os.path.join(modpath, 'TSLA-USD.csv')
# Create a Data Feed
#data = bt.feeds.GenericCSVData(
#dataname=datapath,
# Do not pass values before this date
#fromdate=datetime.datetime(2008, 4, 4),
# Do not pass values before this date
#todate=datetime.datetime(2016, 12, 2),
#nullvalue=0.0,
#dtformat=('%m/%d/%Y'),
#datetime=0,
#high=2,
#low=3,
#open=1,
#close=4,
#volume=5,
#openinterest=-1)
df = get_polonix()
data = bt.feeds.PandasData(dataname=df)
# Add the Data Feed to Cerebro
cerebro.adddata(data)
# Set our desired cash start
cerebro.broker.setcash(100000.0)
# Add a FixedSize sizer according to the stake
cerebro.addsizer(bt.sizers.FixedSize, stake=5)
# Set the commission
cerebro.broker.setcommission(commission=0.002)
# Print out the starting conditions
print('Starting Portfolio Value: %.2f' % cerebro.broker.getvalue())
# Run over everything
cerebro.run()
# Print out the final result
print('Final Portfolio Value: %.2f' % cerebro.broker.getvalue())
# Plot the result
cerebro.plot(style='candlestick')
Если нужно добавить индикаторы:
def __init__(self):
# Keep a reference to the "close" line in the data[0] dataseries
self.dataclose = self.datas[0].close
# To keep track of pending orders and buy price/commission
self.order = None
self.buyprice = None
self.buycomm = None
self.redline = None
self.blueline = None
# Add a BBand indicator
self.bband = bt.indicators.BBands(self.datas[0], period=self.params.BBandsperiod)
# Indicators for the plotting show
#bt.indicators.StochasticSlow(self.datas[0])
bt.indicators.MACDHisto(self.datas[0])
self.
rsi = bt.indicators.RSI(self.datas[0]) # Если обрабатывать данные
Комментариев нет:
Отправить комментарий